7.1. Symmetric Group \(S_3\)

Definition

If \(\sigma: S \mapsto T\) and \(\tau: T \mapsto U\), then the composition of \(\sigma\) and \(\tau\) (also called their product) is the mapping \(\sigma \circ \tau: S \mapsto U\) defined by the means of \(s(\sigma \circ \tau) = (s\sigma) \tau \quad \forall s \in S\).

  • Let \(G = S_3\), the group of all 1-1 mappings of the set \(\{x_1, x_2, x_3\}\) onto itself, under the product as specified above. G is a group of oder 6.

  • Any mapping \(\sigma\) can be specified as:

\[\begin{split}\sigma : \begin{array}{l} x_1 \rightarrow x_i \\ x_2 \rightarrow x_j \\ x_3 \rightarrow x_k \end{array} \quad i,j,k \in \{1,2,3\}, i \neq j, j \neq k, k \neq i\end{split}\]
  • Simpler notation \(\sigma : (x_1, x_2, x_3) \mapsto (x_i, x_j, x_k)\)

  • Even simpler notation \(\sigma : (1, 2, 3) \mapsto (i, j, k)\)

  • Simplest notation \(\sigma = (i,j,k)\)

  • \(S_3 = \{ (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\}\)

  • Define \(e = (1,2,3)\), identity mapping

  • Define \(\phi = (2,1,3)\)

  • Define \(\psi = (2,3,1)\)

7.1.1. Derivations

  • \(\phi^2 = \phi \cdot \phi = (2,1,3) \circ (2,1,3) = (1,2,3) = e\)

  • Thus \(\phi^{-1} = \phi\)

  • \(\psi^2 = \psi \cdot \psi = (2,3,1) \circ (2,3,1) = (3,1,2)\)

  • \(\psi^3 = \psi^2 \cdot \psi = (3,1,2) \circ (2,3,1) = (1,2,3) = e\)

  • Thus \(\psi^{-1} = \psi^2\)

  • \(\phi\psi = \phi \cdot \psi = (2,1,3) \circ (2,3,1) = (3,2,1)\)

  • \(\psi\phi = \psi \cdot \phi = (2,3,1) \circ (2,1,3) = (1,3,2)\)

  • Thus \(S_3 = \{ e, \phi, \psi, \phi\psi, \psi\phi, \psi^2 \}\)

Elements of \(S_3\)

Element

Mapping

Inverse

Order

\(e\)

(1,2,3)

\(e\)

1

\(\phi\)

(2,1,3)

\(\phi\)

2

\(\psi\)

(2,3,1)

\(\psi^2\)

3

\(\phi\psi\)

(3,2,1)

\(\phi\psi\)

2

\(\psi\phi\)

(1,3,2)

\(\psi\phi\)

2

\(\psi^2\)

(3,1,2)

\(\psi\)

3