4.2. Garden

This page is a collection of a variety of matrices used in different examples and contexts and their associated results.

4.2.1. Square Matrices

4.2.1.1. 2x2 matrices

Simple examples

\[\begin{split}A &= \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}\\ det(A) &= 1\\ A^{-1} &= \begin{bmatrix}2 & -1\\ -5 & 3 \end{bmatrix}\end{split}\]

Next

\[\begin{split}A &= \begin{bmatrix}3&2\\4&0\end{bmatrix}\\ det(A) &= -8\\ A^{-1} &= \begin{bmatrix}0 & 1/4 \\ 1/2 & -3/8 \end{bmatrix}\end{split}\]

4.2.1.2. 3x3 matrices

\[\begin{split}A &= \begin{bmatrix} 1 & 3 & 2\\ 4 & 1 & 3\\ 2 & 5 & 2 \end{bmatrix}\\ minor(A) &= \begin{bmatrix} -13 & 2 & 18 \\ -4 & -2 & -1 \\ 7 & -5 & -11 \end{bmatrix}\\ cof(A) &= \begin{bmatrix} -13 & -2 & 18 \\ 4 & -2 & 1 \\ 7 & 5 & -11 \end{bmatrix}\\ adj(A) &= \begin{bmatrix} -13 & 4 & 7 \\ -2 & -2 & 5\\ 18 & 1 & -11 \end{bmatrix}\\ det(A) &= 17\\ A^{-1} &= \begin{bmatrix} -13/17 & 4/17 & 7/17 \\ -2/17 & -2/17 & 5/17\\ 18/17 & 1/17 & -11/17 \end{bmatrix}\end{split}\]

4.2.1.3. 4x4 matrices

\[\begin{split}S &= \begin{bmatrix} 3 & 2 & 0 & 1\\ 4 & 0 & 1 & 2 \\ 3 & 0 & 2 & 1\\ 9 & 2 & 3 & 1 \end{bmatrix}\\ |S| &= 24\end{split}\]

Lets write this as

\[\begin{split}S &= \begin{bmatrix} A & B \\ C & D \end{bmatrix}\end{split}\]

Where

\[\begin{split}A &= \begin{bmatrix} 3 & 2 \\ 4 & 0 \end{bmatrix}\\ B &= \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}\\ C &= \begin{bmatrix} 3 & 0 \\ 9 & 2 \end{bmatrix}\\ D &= \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}\end{split}\]

We have:

\[|S| = |A| |D - CA^{-1}B|\]
\[\begin{split}|A| &= -8\\ A^{-1} &= \begin{bmatrix}0 & 1/4 \\ 1/2 & -3/8 \end{bmatrix}\\ CA^{-1} &= \begin{bmatrix} 0 & 3/4 \\ 1 & 3/2 \end{bmatrix}\\ CA^{-1}B &= \begin{bmatrix} 3/4 & 3/2 \\ 3/2& 4\end{bmatrix}\\ D - CA^{-1}B &= \begin{bmatrix} 5/4 & -1/2 \\ 3/2& -3\end{bmatrix}\\ |D - CA^{-1}B| &= -3\\ |S| &= |A||D - CA^{-1}B| = -8 \times -3 = 24\end{split}\]

Inverse

\[\begin{split}\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = I\end{split}\]

gives

\[\begin{split}E &= (A - BD^{-1}C)^{-1}\\ G &= -D^{-1}CE\\ H &= (D - CA^{-1}B)^{-1}\\ F &= -A^{-1}BH\end{split}\]

Algorithm:

  1. \(P = D^{-1}C\)

  2. \(E = (A - BP)^{-1}\)

  3. \(G = - P E\)

  4. \(Q = A^{-1}B\)

  5. \(H = (D - CQ)^{-1}\)

  6. \(F=-Q H\)

4.2.1.4. Special 2x2 matrices

Following are 2x2 matrices such that \(A^2 = A\).

\[ \begin{align}\begin{aligned}\begin{split}\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right]\end{split}\\\begin{split}\left[\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right]\end{split}\\\begin{split}\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]\end{split}\\\begin{split}\left[\begin{array}{cc}1 & 1 \\ 0 & 0\end{array}\right]\end{split}\\\begin{split}\left[\begin{array}{cc}0 & 0 \\ 1 & 1\end{array}\right]\end{split}\\\begin{split}\left[\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right]\end{split}\\\begin{split}\left[\begin{array}{cc}0 & 1 \\ 0 & 1\end{array}\right]\end{split}\end{aligned}\end{align} \]

Flip matrix

\[\begin{split}\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right] \left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right] = \left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]\end{split}\]